A181E Physiology of reproduction in male and semen technology ## Sperm selection by density-gradient centrifugation of Merino ram semen cold-stored up to 48 h improves viability and membrane integrity <u>D.A. Galarza</u>^{1,2}, M. Ladrón de Guevara¹, P. Beltrán-Breña¹, D. Rizos¹, A. López-Sebastián¹, J. Santiago-Moreno¹ ¹Department of Animal Reproduction, INIA, Madrid, Spain; ² Faculty of Agriculture Sciences, University of Cuenca, Cuenca, Ecuador. **Keywords**: sperm, cold-storage, selection. Liquid ram semen stored at 5°C would be more competent than frozen/thawed for sheep crossbreeding programs. The aim was to evaluate the kinetics and membrane integrity of Merino ram semen cold-stored up to 48h at 5°C before and after density-gradient centrifugation (DGC) selection. Pools of 3 normospermic Merino ram (2-7 years) ejaculates were collected by artificial vagina in fifteen sessions (45 ejaculates), diluted to 200x10⁶ spermatozoa/ml with skim milk-based extender contained 6% egg yolk and cold-stored up to 48h at 5°C. Motile spermatozoa were separated by BoviPure® DGC (Galarza et al., 2018, Anim Reprod Sci 192: 261-270) using 250µl of fresh (n = 30) and cold-stored semen (24h: n = 10 and 48h: n = 10). The final pellet of 300µl was used to assess semen quality. The kinetic parameters were evaluated by computer-assisted sperm analysis (CASA) while plasma, acrosomal and mitochondrial membrane status was analyzed by PI/FITC PNA/Mitotracker fluorescence. The effects of storage time (fresh, 24 & 48h) and sperm selection process were analysed by univariant ANOVA and Bonferroni's test (P < 0.05). In terms of sperm storage time, CASA analysis of non-selected semen samples showed a significant decrease after storage for 24 and 48h compared to fresh samples with regard to progressive motility [SPM (%): 52.30 ± 4.1 and 36.9 ± 5.5 vs 71.3 ± 1.6], straight line velocity [VSL ($\mu m/sec$): VSL 132.2 ± 6.1 and 109.7 ± 6.3 vs 176.7 ± 4.3], linearity [LIN (%): 69.2 ± 3.5 and 59.0 ± 5.0 vs 82.0 ± 1.2], and straightness [STR (%): 75.7 ± 3.3 and 66.0 ± 4.3 vs 86.9 ± 0.9], respectively. However, analysis of DGC-selected semen showed a decrease only at storage for 48h when compared to 24h or fresh samples with regards to SPM (35.6 \pm 3.9 vs 56.1 \pm 6.91 and 59.3 \pm 2.6), VSL (83.5 \pm 4.4 vs 105.3 \pm 6.5 and 110 \pm 2.0) and LIN (63.9 \pm 3.4 vs 75.0 \pm 3.7 and 80.7 \pm 2.4), respectively. A comparison between DGCselected and non-selected samples showed a significant lower total motility [TM (%): 94.4 ± 0.8 vs $85.4 \pm$ 1.90], VSL (176.7 \pm 4.2 vs 110.0 \pm 2.0) and wobble [WOB (%): 94.2 \pm 0.6 vs 88.5 \pm 1.5] only for fresh semen. Fluorescence analysis evidenced a decrease only in 24h cold-stored non-selected compared with fresh semen with regard to plasma membrane integrity [PMI (%): 64.8 ± 2.9 vs 80.1 ± 1.7], high mitochondrial function [HMF (%): 88.2 ± 1.6 vs 93.9 ± 1.0] and total intact plasma/intact acrosome/high mitochondrial function [IPIAHM (%): $61.8 \pm 3.1 \text{vs}$ 78.7 ± 2.0]. In contrast, no differences were observed between fresh and cold-stored DGC-selected semen. A comparison between selected and non-selected semen showed a significant increase of PMI (64.8 \pm 3.14 to 89.4 \pm 2.32), HMF (88.2 \pm 1.26 to 96.0 \pm 1.26) and IPIAHM (61.8 ± 3.14 to 87.6 ± 2.04) only for 24h. These results suggest that kinetic activity of cold-stored and DGC-selected ram spermatozoa is maintained and the selection process results in improved viability and membrane integrity. Therefore, liquid storage combined with DGC-selection might become a good alternative to fresh or frozen non-selected semen to be used for artificial insemination in sheep crossbreeding programs.